
For many applications such as real-time stock prediction algorithms or brain simulations, there is a need for extremely fast and massively parallel computing. My friend, Alex Nugent, and I needed some enormous computational power for some projects we are working on and wanted a cheap and elegant solution. We already built a handful of dual-core headless Linux boxes and added them to our local network, but we could see that adding more would not go too far because of space limitations. What we needed was a compact and efficient design with maximal core density. Rack mountable servers were quite expensive relative to a hand-built quad-core Linux boxes. We imagined there existed some kind of cabinet that would be perfect for housing a bunch of computers. Each host in the cluster would consist of the bare minimal of components for our applications with a main emphasis on fast processing and less on RAM and hard drive capacity. The enclosures for each host would have to hold a motherboard, power supply, RAM, CPU w/ fan, and hard drive.
I looked around on the Ikea website and after an hour, I pared down all possible furniture pieces to Helmer. About five minutes later, I checked out Digg, and the third story from the top was coincidentally about a guy in Sweden who built a Linux cluster into a Helmer cabinet. The very next day I received an IKEA advertisement showing Helmer on sale for only $29.99 from $49.99. At that point, I was sure that the Helmer cabinet was meant to be the future case our our cluster, and I picked it up the next day! The following is an illustrated guide to building your own 24-core Linux cluster in pictures.
Components:

(1) Ikea Helmer Cabinet $29.99
(6) BioStar TForce TA780G M2+ Motherboard $79.99
(6) AMD Phenom X4 9850 Black CPU $169.00
(6) Antec EA380 380 W Power Supply Unit $59.99
(6) Toshiba 80-GB Sata2 Laptop Hard Drive $49.99
(6) G-Skill 1GBX2 DDR2 RAM $42.99
(6) EverCool 50mm Case Fan $3.79
(6) 3-foot LAN Patch Cables $1.49
(1) 8-Plug Surge Protected Power Strip $39.99
(1) TrendNet 8-Port Unmanaged Switch $18.49
(6) Linux Operating Systems $00.00
Misc. Parts $20.00
----------------------------------------------------------
Total $2550.11
Component Layout

Case Cooling

Modifications

Final Steps
Before you put all the computer parts in each drawer case, you need to piece the computer together on a table and modify a few BIOS settings and install an operating system of your choice with an optical drive. Otherwise, after you have all the components in, it is a bit difficult to hook up a monitor, keyboard and mouse to the mobo because of the tight space. We adjusted the BIOS settings to enable the Wake-On-LAN feature, which I blogged about previously here. We installed Xubuntu on each host. While I'm sure there is a different flavor of Linux more appropriate for a headless Linux host, we went with Xubuntu because we're comfortable with it. If you have a suggestion of what OS would be better, please leave a comment. The only constraint is that we need to be able to run a Java program. After you have all the hardware and software modifications complete, put all the components into each drawer and into the Helmer cabinet. Connect each PSU and the router to the power strip and each host to the router. Plug the router into your local area network (LAN) and you have 24 cores more at your service!
While we have not yet quantified how "fast" our cluster is, we have been able to finish our computations roughly 24 times faster than one of our single core computers, which translates to an immense gain in productivity. That means, what would take 24 hours before can be accomplished in one hour. We still want to play around with some over-clocking, and we'll ramp up to that eventually. At idle speed, the CPU temps are are around 30 degrees Celsius. With all 24 cores at 100% load, the CPU temperatures stay at a nice and warm temperature of about 45 degrees Celsius. The air flow through the drawers sufficiently keeps the components cool, and at full tilt, you can feel a strong warm breeze come out of the rear of Helmer.
Other Thoughts
The idea of building a 6-host 24-core cluster in such a small space for such a low price tag of $2550.11 is very attractive not only for specialty applications, but also for businesses or educational departments looking to invest in a handful of servers. With Linux desktop and server operating systems such as Ubuntu forcefully emerging on the scene and taking away market share from Microsoft, people will inevitably embrace these faster, safer, easier and more elegant computing systems. That, in combination with compact, reliable, and inexpensive computer hardware will pave the way to better systems at any scale. I'm guessing that using Helmer cases and quad-core AMD processors, one could build the world's fastest and most efficient super computer at a fraction of the cost of the next fastest. Perhaps a "Helmer" will someday become a unit of measurement defined as "six computers in 2.65 cubic feet" or something like that.
Update: Check out the gallery to the right for pics of putting Helmer together. -------------->